

1

Project Plan

of the

Concept

Table of contents

1. Introduction ... 3

2. Background ... 3

2.1 Product owner ... 3

2.2 Current processes ... 4

3. Business case and stakeholders .. 4

3.1 Stakeholders ... 4

3.1.1 Employees of Axxes ... 4

3.1.2 Axxes event management .. 4

3.2 Added value .. 4

3.2.1 Value to employees .. 5

3.2.2 User Experience Improvements ... 5

3.2.3 Stronger Employee Connections ... 5

4. Use Case Diagram ... 6

5. Project Breakdown Structure .. 7

6. ERD ... 9

7. Project Scope .. 9

8. Tech Stack Decisions ... 10

8.1 Backend .. 10

8.1.1 Key Features .. 11

8.1.2 Framework and Tools... 11

8.1.3 Conclusion .. 12

8.2 Databases ... 13

8.2.1 Key Features .. 13

8.2.2 Databases and tools ... 13

8.2.3 Conclusion .. 14

8.3 AI ... 15

8.3.1 Key Features .. 15

8.3.2 Main Tasks and Tools .. 16

8.3.3 Conclusion .. 18

8.4 Frontend .. 18

2

8.4.1 Key Features .. 19

8.4.2 Framework and Tools... 19

8.4.3 Key Frontend Tools .. 20

8.4.4 Conclusion .. 21

8.5 Infrastructure ... 21

8.5.1 Key Features .. 21

8.5.2 Infrastructure tools .. 21

8.5.3 Conclusion .. 23

8.5.4 Gitlab .. 23

8.5.5 Cloud environment ... 24

8.5.6 Cloud Diagram.. 26

8.5.7 cost analysis ... 27

8.5.8 Data security ... 28

9. Timeline for Concept Phase.. 29

Phase 1 (Deadline: 2/12/2024) ... 29

Phase 2 (Deadline: 16/12/2024) ... 29

Phase 3 (Deadline: 23/12/2024) ... 30

10. Risks and measurements ... 30

11. Reporting... 34

12. Project Team ... 34

12.1 Team Members & Roles ... 34

12.2 Role Descriptions .. 34

12.2.1 Backend Developer .. 35

12.2.2 UI/UX and Frontend Developer .. 35

12.2.3 AI/ML Specialist .. 35

12.2.4 DevOps and QA ... 36

13. Conclusion .. 36

14 Sources .. 36

3

1. Introduction

During our studies in applied computer science, we were tasked with designing and developing

a carpooling application for Axxes. This project brought together our team’s diverse skills in

application development, artificial intelligence, and infrastructure to design and implement a

functional and polished solution.

This document serves as a comprehensive plan for the application, detailing its background,

business case, stakeholders, objectives, project timeline, and team composition. Additionally, to

prepare for the implementation phase, we have evaluated and selected the most suitable

technologies to ensure a successful and efficient development process.

2. Background

The product owner for this project has provided us with an assignment to complete. In this

section, we will discuss information about the product owner and the assignment they have

given us. Additionally, we will cover the current processes that the product owner wants to

replace with our finished application.

2.1 Product owner

The product owner for this assignment is Axxes. Axxes is an IT consultancy company with office

locations in Antwerp, Ghent, and Utrecht. It is a growing company that employs more than 400

employees.

They offer a wide assortment of services to their customers, including:

• Software engineering

• Data

• (Software) Architecture

• Quality assurance

• Infrastructure

• Coud

• DevOps

• Analysis

• ...

Axxes has strong values and goals. Their core values are growth, quality, and the feel-good

factor. Their mission is to increase the growth of people and clients by connecting and

strengthening technological expertise (Axxes, n.d.).

Axxes aims to improve employee relationships and ease transportation to events by providing a

centralized carpooling solution. The app we are creating, will streamline the process, reduce

stress, and align with Axxes' core values of growth, quality, and the feel-good factor. It will also

4

incorporate a backend, AI, frontend, and infrastructure elements to ensure scalability, efficiency,

and a user-friendly experience.

2.2 Current processes

Axxes currently lacks an efficient system for employees to arrange shared rides, making the

process of getting to events confusing and inefficient. Employees must manually contact others,

determine addresses, and coordinate pickup points, leading to stress and excessive

communication. This may discourage carpooling or attendance at events.

Our application addresses these issues by centralizing the carpool process. It uses AI to reduce

communication needs and considers user preferences to maximize comfort. This makes

carpooling easier, encouraging more employees to attend events and improving workplace

relationships.

3. Business case and stakeholders

In this section, we outline the business case for the project and identify the key stakeholders

involved. The focus is on understanding the impact, benefits, and responsibilities associated

with the project.

3.1 Stakeholders

This subsection details the primary stakeholders whose engagement and participation are

critical to the success of the project.

3.1.1 Employees of Axxes

Employees will benefit the most from this project. By improving commuting options and making

carpooling easier, more employees will be able to get to events, which may result in higher

participation in company activities.

3.1.2 Axxes event management

Event management will benefit from increased employee participation in events due to better

transportation options. The project will also make event planning easier by ensuring smoother

coordination of travel for attendees.

3.2 Added value

Next, we discuss the values that our carpool application will provide for Axxes.

5

3.2.1 Value to employees

• Improved commute efficiency

o The project will make commuting easier and faster for the employees by helping

them plan carpools and routes, so their journey to the event is more efficient.

• Participation in Company Events

o The solution will make it easier for employees to participate in corporate events

and potentially through better coordination of transportation and event

communication. This could lead to higher attendance rates.

3.2.2 User Experience Improvements

• Better Carpooling Experience

o A key aspect of the project is to enhance the user experience of carpooling

among employees. With a user-friendly system, employees will find it easier to

coordinate carpool arrangements, leading to increased usage.

3.2.3 Stronger Employee Connections

• By encouraging more interaction and coordination through shared transportation,

employees will form stronger connections. This can improve teamwork and collaboration

across departments within the company.

6

4. Use Case Diagram

This use case diagram shows how different users (Employee, Admin, and Time) interact with

the Carpool Application. Employees can log in, manage their own profiles, view events, and

register for rides, while Admins manage events. The system also handles tasks like reminders

and organizing carpools.

To read it, look at the actors (users) and their connections to the features (use cases). The

system boundary (rectangle) shows what’s included in our system, and each oval represents a

feature the system provides. Relationships like «include» and «extend» show dependencies or

optional features.

7

5. Project Breakdown Structure

• 1.1. Backend

o 1.1.1. Core Services

▪ Data management for users, cars, events, and rides.

▪ Managing event data in a database.

▪ Communication with AI services for grouping and optimization.

o 1.1.2. API Features

▪ Authentication and authorization (OAuth 2.0, JWT).

▪ Carpool creation and management.

▪ Real-time notifications via WebSockets.

▪ Event management and participation tracking.

o 1.1.3. Database

▪ MySQL for relational data management (users, rides, events).

▪ Real-time updates and synchronization with AI services.

• 1.2. AI System

o 1.2.1. User Grouping

▪ Match users to carpools based on:

• Proximity to drivers and other passengers.

• Preferences (e.g., music, smoking, seating).

• Driver-defined criteria (pickup radius, vehicle capacity).

o 1.2.2. Pickup Points Optimization

▪ Automated pickup point identification for minimal detours.

▪ Route sequencing for efficient passenger pickups.

o 1.2.3. Real-Time Adaptations

▪ Adjustments based on last-minute changes (e.g., new passengers or

cancellations).

o 1.2.4. Tools and Technologies

▪ Scikit-learn for clustering and proximity-based grouping.

▪ PyTorch for advanced model training (route optimization).

▪ Geopy for distance calculations.

• 1.3. Frontend

o 1.3.1. User Interface

▪ Events page: List and filter upcoming company events with carpool options.

▪ Map integration: Display event locations and carpool routes.

▪ Login/signup: Secure user authentication.

▪ User (optionally driver) settings: Manage profile, vehicles, and notifications.

▪ Event management:

• Create, update, delete events

▪ Carpool management:

• Create, join, or manage active carpools.

• Adjust pickup points dynamically.

▪ Notifications: Real-time alerts for changes in carpools or events.

▪ Live chat: Enable seamless communication between drivers and passengers.

8

o 1.3.2. Real-Time Features

▪ WebSocket integration for:

• Live updates (chat, carpool status).

• Notifications on schedule or route changes.

▪ Multi-passenger route optimization with real-time mapping.

o 1.3.3. Performance Optimization

▪ Lazy loading for essential screens.

▪ Efficient error handling to prevent user disruptions.

• 1.4. Infrastructure

o 1.4.1. Scalability and High Availability

▪ Kubernetes for container orchestration.

▪ Terraform for infrastructure provisioning.

▪ Auto-scaling with AWS Elastic Kubernetes Service (EKS).

o 1.4.2. Continuous Integration/Deployment (CI/CD)

▪ GitLab Actions for automated build, test, and deployment pipelines.

o 1.4.3. Monitoring and Security

▪ Prometheus and Grafana for system performance monitoring.

▪ SonarQube for regular vulnerability scanning.

▪ AWS Secrets Manager for secure credential storage.

o 1.4.4. Data Management

▪ Amazon RDS for relational database management.

▪ Amazon S3 for static assets (e.g., route maps, logs).

9

6. ERD

This ERD shows how the carpool application's database is structured. It includes entities like

User, Ride, Event, UserVehicle, and Genres, each with their attributes. For example, User has

details like firstName, email, and preferences (isSmoking, isTalkative, seatingPreference),

which are stored as booleans.

The Genres table handles music preferences, linked to User through the UserGenre table.

Relationships connect the entities: a User can own many UserVehicles, and a Ride is linked to a

User, Vehicle, and Event. Passengers are also connected to Ride. Numbers like 1, *, and 0..1

show how many records relate. For example, a User can have multiple vehicles, but each

Vehicle belongs to one User.

7. Project Scope

We determined the scope for this project by using the MoSCoW model. This model groups

project requirements into four different categories. These categories differ in priority.

The ‘Must have’ category includes the features that are required to complete the basic

application. The ‘Should have’ category includes important features that aren’t necessary for a

10

working application but are important. Next up is the category ‘Could have’ which has less

important features, and finally there is the category ‘Won’t have’ which includes features that are

out of scope for this project.

Must have Should have Could have Won’t have

UI: Profiles, events,
carpool
management, map,
event management

Car management:
Drivers manage car
details.

Live chat: Real-time
communication.

NLP reviews:
Analyse user
feedback.

API integration:
Event data and user
authentication

Pickup points:
Location selection for
passengers

Push notifications for
trip updates and
reminders.

Highly customizable
branding for
organizations.

Core functionality:
Create/manage
carpools

System functions:
notifications

Rating system for
drivers and
passengers.

Complex AI for route
prediction.

AI integration: Use AI
to optimize pickup
points and group
users.

Full event
management system

Automatic route
optimization for
drivers.

Fully offline
functionality.

Set up Infrastructure Share ride details via
social media.

Multi-language
support.

Integration with other
apps (Google Maps/
Waze).

Basic
Monitoring/Security

Insights into ride
usage

Badges for frequent
riders or eco-
friendliness.

Payment integration.

8. Tech Stack Decisions

This section outlines the key technology choices made for the backend, AI components,

frontend, and infrastructure of the project. It covers the rationale and considerations that went

into selecting the appropriate tools, frameworks, and platforms to power the various aspects of

the system.

The goal of this section is to provide a comprehensive overview of the technical foundation upon

which the solution is built.

8.1 Backend

The backend is the engine of the Carpooling App, making sure everything runs smoothly, and

all data is managed correctly. It connects the app to the database and the AI system while

keeping everything in sync.

11

8.1.1 Key Features

Interaction with the Database:

• Manages database queries, CRUD operations.

Interaction with AI

• Facilitates communication with the AI system for route optimization and user grouping.

API endpoints

• Provides RESTful APIs for communication between the app's components.

• Ensures security of API endpoints.

WebSocket Live Chat

• Using WebSockets to implement live chat functionality.

Trigger notifications

• Trigger and send notifications.

8.1.2 Framework and Tools

We evaluated several backend frameworks based on key criteria including team experience,

performance, scalability, real-time capabilities, security, database integration, and ecosystem

support. Below is a summary of the criteria and how each framework measured up.

Before we start the comparison, we will summarize each option that gets compared.

First is Spring Boot, which is a very popular and robust framework for Java with a lot of features.

Next is Express.js, combined with Node.js, for a JavaScript backend. Node.js is a JavaScript

runtime, which enabled developers to use JavaScript in the backend, express.js is a minimal

backend framework for writing REST APIs and building web applications.

Finally, we compared Django, a high-level web framework for Python that speeds up

development and allows you to build your application with less code.

Criteria Summary:

• Team Experience:

o Spring Boot: Multiple members have experience with java and Spring Boot.

They have implemented similar APIs in it.

o Node.js: Moderate experience.

o Django: Limited experience with Python and Django, requiring a steeper learning

curve.

• Real-Time Capabilities:

12

o Spring Boot: Native WebSocket support, making it well-suited for live chat and

real-time updates on carpool statuses.

o Node.js: Excellent WebSocket support, ideal for real-time communication. Via

external library called ‘ws’.

o Django: Limited WebSocket support, requiring third-party libraries (e.g., Django

Channels) for real-time features. (GeeksForGeeks, n.d.) (DZone, 2019)

• Security:

o Spring Boot: Comprehensive built-in security features including OAuth2, JWT,

and robust authentication and authorization mechanisms. Auth0, the service we

use for frontend authentication can also be used to secure Spring Boot API

endpoints.

o Express.js: Requires additional third-party libraries (e.g., Passport.js) for

advanced security configurations. Auth0 authentication also works for express.js

endpoints.

o Django: Strong security out of the box, but not as flexible as Spring Boot for

complex enterprise security needs. Protection against common attacks (SQL

injection, cross-site scripting (XSS), and fake requests (CSRF)) out of the box.

(GeeksForGeeks, n.d.) (DZone, 2019) Auth0 authentication also works for

Django.

• Database Integration:

o Spring Boot: Excellent integration with relational databases

(PostgreSQL/MySQL) using JPA.

o Express.js: Flexible database options, but less support for complex queries and

database management compared to Spring Boot.

o Django: Intuitive ORM integration but less customizable than Spring Boot's JPA.

(GeeksForGeeks, n.d.) (DZone, 2019)

• Ecosystem & Community:

o All the options have a highly active community and ecosystem.

8.1.3 Conclusion

After evaluating several backend frameworks, we selected Spring Boot for the carpooling app

due to its robust, enterprise-grade features, robust security, and strong support for real-time

capabilities like WebSockets. Compared to the other options, our team members have more

experience with Java, which also influenced our final choice. The database interaction via

Spring Boot JPA is customizable and convenient for this project, compared to alternatives

offered by the other frameworks.

Thus, Spring Boot offers a solid combination of features for our app's current and potential

future requirements, balancing real-time functionality, security, and scalability and combined

with the team experience, we chose it as backend framework for this project.

https://www.npmjs.com/package/ws

13

8.2 Databases

This subsection covers the database technologies selected for the project, including the choice

of relational or NoSQL databases and the specific DBMS chosen, based on factors that we

deemed important for this project.

8.2.1 Key Features

Basic Data Storage

• Ability to reliably store and retrieve structured data such as user profiles, carpool groups,

and trip details.

AI Integration

• Compatibility with our AI service for grouping employees into carpools.

Query Flexibility

• Support for simple filtering and retrieving data, such as fetching trips by date or user ID.

Low Maintenance

• A solution that is easy to manage, deploy, and scale for our small-scale app

requirements.

Backups

• Ability to easily create and restore backups of existing data.

8.2.2 Databases and tools

When selecting a database for our carpooling application, it’s essential to evaluate options

based on how well they meet the specific needs of the project. These needs include ease of

integration with our Java Spring backend and AI services, ease of deployment and hosting,

team experience, suitability for small-scale applications, and potential for future scalability if

required. Below is an evaluation of the most relevant database options.

Criteria Summary

• Team experience:

14

o Our team has the most experience with relational databases, this excludes

MongoDB.

o Our team has limited experience in using the advanced features of PostgreSQL.

o Multiple team members have used and deployed MySQL before during projects.

o Some team members have used SQLite before.

• Integration:

o PostgreSQL integrates seamlessly with Java Spring using tools like Hibernate or

Spring Data JPA. It also works well with Python-based frameworks.

o MySQL integrates effectively with Java Spring, supported by Spring Data JPA

and other ORM tools. Python tools and frameworks also have good support for

MySQL databases.

o MongoDB’s flexible schema is suitable for AI services, especially when working

with semi-structured data. However, its NoSQL nature makes it less compatible

with traditional relational queries, requiring additional effort for integration with

Java Spring (e.g., using Spring Data MongoDB).

o SQLite is extremely simple to integrate with Java and Python applications. It’s

supported out of the box in many development environments but lacks the robust

tooling and frameworks available for more sophisticated databases.

(DigitalOcean, 2022) (Vercel, 2023)

• Ease of Hosting and Setup:

o PostgreSQL requires a dedicated database server but is well-documented and

widely supported across platforms. All major hosting services support it as it is a

very popular database (DB-engines, n.d.).

o Like PostgreSQL, MySQL requires a server setup but is relatively simple to

deploy locally and in production. Most hosting services support MySQL as it is

even more popular than PostgreSQL (DB-engines, n.d.).

o MongoDB is easy to set up locally and supports hosted solutions like MongoDB

Atlas (MongoDB, n.d.), which provide built-in scalability and monitoring. Its

lightweight nature is an advantage for development.

o SQLite is embedded and requires no server, making it the easiest to set up and

run. However, it doesn’t scale well for multi-user or larger applications. (Vercel,

2023) (DigitalOcean, 2022)

8.2.3 Conclusion

After evaluating multiple database options, we have chosen MySQL as the database solution for

the carpooling app. MySQL offers a solid balance of ease of use and performance, making it an

ideal choice for this project. Its popularity ensures good documentation and a wide range of

third-party tools. It will also be easy to host with most hosting providers.

While PostgreSQL offers more advanced querying capabilities and extensibility, its added

complexity is unnecessary for our app’s current scale and requirements.

MongoDB was considered for its scalability and flexibility but was not chosen because we are

as a team more familiar with relational databases, that is also why we didn’t compare other

15

NoSQL databases. SQLite was dismissed due to its limitations in handling concurrent users and

scalability needs.

Overall, MySQL provides the best combination of reliability, performance, and simplicity for our

use case, ensuring a smooth development process and future scalability.

8.3 AI

This section covers the AI-related technology features and decisions, including the machine

learning models, frameworks, and libraries chosen to power the intelligent capabilities of the

system.

8.3.1 Key Features

User Grouping

The carpooling system ensures efficient ride matching through a structured process.

Initial Registration

• Passengers register their need for transportation to a specific event.

• At this stage, passengers are not yet assigned to a carpool or driver.

Driver Assignment

• As the event approaches, the system evaluates all registered passengers and

available drivers to form carpools based on:

o Proximity between passengers and drivers.

o Passenger preferences, such as music, smoking, and seating.

o Driver-defined parameters, including pickup radius and vehicle capacity.

Pickup Points

To optimize routes and minimize travel times, the system automatically determines and

manages pickup points:

Automatic Pickup Point Optimization

• The system identifies the most efficient pickup points and sequences passenger pickups

to reduce detours for drivers.

User Interaction with Pickup Points

• Drivers:

o View all assigned pickup points on their route.

16

o Adjust the pickup sequence if necessary to suit preferences or accommodate

changes.

• Passengers:

o Receive notifications about their assigned pickup point.

8.3.2 Main Tasks and Tools

Programming Language

We evaluated several AI tools and frameworks based on key criteria, including team

experience, performance, compatibility, flexibility, scalability, and community support. Below is a

summary of the criteria and how each tool or framework measured up.

Before diving into the comparison, we summarize the options considered.

Python Ecosystem:

• Python is the most widely used language in AI and machine learning, with a rich

ecosystem of libraries like PyTorch, TensorFlow, and Scikit-learn. It is flexible and

efficient for developing AI solutions. (GeeksforGeeks, Best Python libraries for machine

learning , 2023)

Alternatives:

• Java and C++ were considered for their speed and performance. However, they lack

Python's extensive AI-focused libraries and ease of development.

AI Backend - REST API

We decided to use a separate backend for AI services to make the system easier to manage,

more flexible, and efficient. AI tasks, like user grouping and route optimization, are highly

specialized and benefit from being handled in their own environment. This separation allows us

to update or improve the AI models without affecting the main system, ensuring that changes

can be made seamlessly. (Documoto, n.d.)

AI Backend Tools

We chose FastAPI to handle AI tasks and expose REST APIs for integration with the main

system.

Criteria Summary

17

FastAPI:

• High performance with asynchronous capabilities.

• Easy integration with Python-based AI libraries.

• Built-in OpenAPI support for documentation.

Alternatives: Flask and Django REST Framework

• Flask: Lightweight but lacks FastAPI's asynchronous features.

• Django REST Framework: Robust but overly complex for our AI-specific requirements.

Conclusion:

FastAPI was chosen for its performance, modern features, and compatibility with our AI tools.

(GeeksforGeeks, Flask vs FastAPI: Which one to choose, 2023)

Geolocation and Route Optimization

Problem:

The carpooling app requires geolocation functionality to:

• Calculate distances between user locations and pickup points.

• Perform basic geocoding tasks for route optimization and pickup point determination.

• Ensure cost-efficiency while delivering reliable geolocation services.

Chosen Tool: Google Maps API

Why Google Maps API?

• Geocoding, route optimization, and real-world distance calculations. (Platform, n.d.)

• Handles multi-stop routes efficiently.

• Accurate and up-to-date global data.

Alternatives

Geopy

• Basic Functionality: Only calculates straight-line distances, no road or traffic data.

• No Route Optimization: Can’t handle multiple stops or advanced routing.

Lacks real-world travel and traffic accuracy. (GeoPy, n.d.)

18

User Grouping and Clustering

Scikit-learn:

• Lightweight and easy to implement.

• Specialized clustering algorithms like K-Means and DBSCAN.

• Strong community support and extensive documentation.

Alternatives (TensorFlow and PyTorch):

• Overpowered for clustering tasks.

• Designed for deep learning, unnecessary for simpler clustering tasks. (GeeksforGeeks,

Scikit-Learn vs TensorFlow: Which one should you choose?, 2023)

Pickup Points Optimization

Google Maps API

• Provides reliable distance matrix for route optimization.

• Includes routing features like shortest path calculations.

• Easy integration for location-based services

Alternatives

ORTools, NetworkX

Why Google Maps API?

1. Google Maps API is a proven solution for location-based optimizations.

2. It reduces development complexity by handling routing and distance calculations internally.

3. It has global data coverage and high reliability

8.3.3 Conclusion

After careful evaluation, we selected Python with libraries like Scikit-learn, PyTorch, and Geopy

for the AI system. FastAPI will serve as the AI backend for REST API integration. These tools

balance performance, flexibility, and simplicity, meeting the app's current and future AI

requirements. This structured approach ensures scalability and seamless integration, enhancing

the carpooling app's overall intelligence and user experience.

8.4 Frontend

The frontend of the carpooling app is designed to deliver an intuitive and user-friendly

experience for managing carpools. The focus is on key elements such as interactive screens,

real-time updates, performance optimization, and using the right tools to ensure a smooth and

efficient user experience.

19

8.4.1 Key Features

User Interface (Screens):

• Events: Display a list of upcoming events, recommended events, and provide filters for

users to find relevant options.

• Map Integration: Show event locations and carpool options for selected events.

• Login/Signup: Allow users to log in using email and password.

• User Settings: Enable users to manage profiles, vehicles (type, license plate, available

seats, photo), and notification settings.

• Carpool Management: Allow users to post or request carpools, view active rides, and

manage trip pickup points.

• Event Management: Allow admin users to add, edit and delete events.

• Multi-Passenger Route Optimization: Dynamically optimize driver routes when

multiple passengers are added, minimizing detours and providing a real-time visual map

for coordination.

• Notifications: Real-time alerts for carpool status, chat messages, and event updates.

• Live Chat: Facilitate communication between drivers and passengers.

• My Carpools: Provide an overview of active and past rides, including archived trips.

• Real-time Updates: We will use WebSockets to deliver live updates for chats, carpool

statuses, and notifications, ensuring immediate feedback for users.

• Performance Optimization: To enhance performance, we will implement lazy loading

for faster load times and prioritize essential components. Efficient error handling will

ensure reliability and a seamless user experience.

8.4.2 Framework and Tools

Framework Selection Process

To determine the most suitable framework, we compared four popular options: React/Next.js,

Angular, Vue, and Svelte. Each was evaluated based on team experience, performance,

scalability, community support, ease of learning, and security.

• React/Next.js:

o The most popular framework, with extensive community support and good

developer tooling.

o Team members have significant experience with React/Next.js.

o Highly optimized for performance and scalability. (Dakowicz, 2024)

• Angular:

o A popular choice with a rich feature set but less team experience compared to

React/Next.js.

• Vue:

20

o Offers a user-friendly syntax, but team members have limited experience with its

ecosystem.

• Svelte:

o Highly efficient and the "most loved" framework, but less mature and unfamiliar to

the team. (Springer, n.d.)

After discussing with the team and comparing the options, React/Next.js emerged as the best

choice due to its alignment with the team’s expertise and project requirements for a responsive,

mobile-friendly web application that performs well on low Wi-Fi and ensure good overall

performance.

But the framework is not the only thing we need to complete the frontend. We can make use of

libraries to make the frontend more performant and easier to maintain.

8.4.3 Key Frontend Tools

In this section, we will delve into the key frontend tools that will support our application

development, including libraries, icon sets, design tools, services … These resources alongside

our chose framework (Next.js), will enhance our ability to create a visually appealing and

interactive user experience.

Authentication

For authentication we will use auth0. We chose this because some team members have used it

in the past and it has all the features and integrations we need.

Another benefit is that it can also be used to secure the API endpoints of the backend.

Map View

To implement the map functionality in our application, we decided to use libraries built on

Mapbox due to its extensive features and high customizability. Specifically, we will utilize both

the react-map-gl and mapbox-gl-js libraries to achieve our goals.

State Management

We will use Zustand for efficient, lightweight, and flexible state management. Its simplicity and

performance advantages make it superior to alternatives like Redux and Context.

UI Framework

Tailwind CSS and shadcn/ui will be used to create responsive, customizable interfaces.

shadcn/ui provides component source code, enabling us to adapt components as needed.

21

Icons

Iconify will integrate a wide range of icons, supporting all popular icon sets for maximum

flexibility.

Mock-ups

We will use Figma to design and prototype the user interface. Figma is free, easy to learn, and

supports shadcn/ui components, and iconify icons (via plugins) ensuring consistency and a fast

design process.

8.4.4 Conclusion

After evaluating various options, we chose React/Next.js as the frontend framework due to its

strong community support, team familiarity, and scalability. Complemented by tools like

Zustand, Tailwind CSS, shadcn/ui, Iconify, and Figma, the frontend will deliver a high-

performance and user-friendly carpooling experience.

8.5 Infrastructure

To run our app, we need an infrastructure that supports its operation and ensures it performs

well. This includes the servers, databases, and tools that power the app, handle user requests,

and store data. A strong infrastructure is essential to keep the app fast, reliable, and scalable as

more users use our app.

8.5.1 Key Features

• Scalability: Use Terraform and Kubernetes to provision a scalable infrastructure

capable of managing varying loads, especially during peak event times.

• Continuous Integration/Deployment (CI/CD): Implement GitHub Actions for

seamless deployment, allowing regular updates and ensuring smooth app

enhancements.

• Monitoring & Logging: Utilize Prometheus and Grafana for real-time monitoring of

system performance, ensuring any issues are detected and resolved quickly.

• Security: Regularly scan for vulnerabilities, ensuring data and system security.

• High Availability: Ensure the app infrastructure is reliable, minimizing downtime and

maintaining a high level of availability for users.

8.5.2 Infrastructure tools

In this section we will explore some tools available for running and managing our application.

We will compare Docker and Kubernetes two of the most used technologies for containerization

and orchestration. We will evaluate both tools based on key criteria such as ease of setup,

22

scalability, resource efficiency, fault tolerance, and security. After a comparison, we will decide

on which tool best suits our infrastructure needs.

• Ease of Setup

o Docker simplifies containerization, offering an easy-to-use CLI and tooling for

building and managing containers.

o Kubernetes adds complexity to the setup, requiring configuration of components

like control planes and worker nodes. Tools like Minikube and Kind can simplify

local setups for development.

• Scalability

o Kubernetes is built for scalability, allowing applications to scale seamlessly

across multiple nodes.

o Features like horizontal pod autoscaling enable Kubernetes to dynamically adjust

resource allocation based on demand, making Docker containers within

Kubernetes highly scalable.

o Docker is limited in scalability. It is designed for local or small-scale deployments

and cannot dynamically manage resources or scale containers across multiple

machines.

• Resource Efficiency

o Docker containers are lightweight and resource-efficient, sharing the host kernel

to minimize overhead.

o Kubernetes enhances resource management by providing features like quotas,

limits, and dynamic resource allocation for optimal performance.

• Learning Curve

o Docker is beginner-friendly, with ample documentation and community support.

o Kubernetes has a steeper learning curve, requiring familiarity with concepts like

pods, services, deployments, and namespaces. However, its active community

and rich ecosystem offer extensive learning resources.

• Fault Tolerance

o Docker relies on manual intervention or scripting for fault recovery.

o Kubernetes introduces advanced fault tolerance, with self-healing features like

automatic pod restarts and replica sets to maintain desired states.

• Networking/Load Balancing

o Docker provides basic networking capabilities for container communication and

port exposure.

o Kubernetes significantly enhances this with advanced networking policies, built-in

load balancing, and traffic distribution across pods using services.

• Security

o Docker offers features like secrets management and secure image handling but

depends on user configuration for strong security.

o Kubernetes strengthens security with features like Role-Based Access Control

(RBAC), namespace isolation, and encrypted secrets, providing a robust security

framework for containerized applications.

23

8.5.3 Conclusion

After comparing Docker and Kubernetes across various criteria, both tools have their strengths

and weaknesses, making them suitable for diverse needs within an infrastructure. Docker is

ideal for smaller-scale applications or environments where ease of setup and resource

efficiency are prioritized. Its simplicity and lightweight nature make it a strong candidate for

straightforward containerization tasks.

On the other hand, Kubernetes excels in scenarios that demand scalability, high availability, and

fault tolerance. Its advanced features like horizontal pod autoscaling, self-healing, and robust

networking and security frameworks make it the best choice for large-scale, production-ready

environments.

For our needs Kubernetes is the better option since there are requirements for scalability and

high availability.

8.5.4 Gitlab

CI/CD

One of the client's requirements was to implement Continuous Integration/Deployment (CI/CD)

to streamline the software development process. We will achieve this using GitLab's built-in

CI/CD features. GitLab offers the ability to create and manage pipelines, which automate tasks

like building, testing, and deploying code. In our setup, a pipeline will automatically trigger

whenever code is pushed to the repository. This ensures that new changes are tested and

deployed efficiently, reducing manual intervention and the risk of errors.

Branches

GitLab also provides the ability to create and manage branches within the repository. Branching

allows us to develop and test new features or fixes without affecting the main codebase (main

branch). By creating a branch for each new task or feature, developers can work independently

and safely, ensuring that unfinished or experimental changes do not disrupt the main

application. Once the changes are complete and tested, the branch can be reviewed and

merged back into the main branch using GitLab’s merge request feature.

To ensure good teamwork and to prevent confusion, branches (except the main branch) must

follow a naming convention. Every branch must be made for a single feature and must include

the name (or initials) of the person that is developing in the branch.

Benefits:

• Parallel Development

o Multiple team members can work on different features simultaneously.

• Safe Testing

o New code can be tested in isolation without risking bugs in the main branch.

24

Security

GitLab provides robust features to enhance security across the repository and pipelines,

ensuring that both the code and its deployment process are protected.

Repository Security: Protected Branches

To enhance repository security, we can utilize protected branches in GitLab. A protected branch

is a critical feature that helps safeguard important parts of the codebase, such as the main or

production branch, from accidental or unauthorized changes.

What Protected Branches Do:

• Restrict Direct Pushes

o only authorized users can push changes directly to a protected branch. This

prevents unauthorized or untested updates from being added to key branches.

• Mandatory Code Review

o Changes must be submitted via a merge request, which requires approval from

designated reviewers before being merged into the protected branch. This

ensures a review process is followed.

Pipeline Security

Securing pipelines is just as important as securing the repository. Pipelines handle sensitive

tasks like building, testing, and deploying code, and they often use credentials or other secrets.

Without proper security measures, they can become a weak point in the workflow.

Pipeline Secrets:

GitLab supports secure management of variables and secrets, such as API keys or database

credentials, which can be stored securely and injected into the pipeline environment when

needed. These secrets are encrypted and not exposed in logs.

Static and Dynamic Code Analysis:

GitLab pipelines can include security scanning jobs.

• Static Application Security Testing (SAST) to detect vulnerabilities in the code.

• Dependency Scanning to identify security issues in third-party libraries.

• Dynamic Application Security Testing (DAST) to test running applications for

vulnerabilities.

8.5.5 Cloud environment

To host our app, we will use Amazon Web Services (AWS) this is a cloud platform that offers a

wide range of services to meet our scalability, reliability, and security requirements.

The following aspects in AWS are services that fit our requirements.

25

Scalability and Elasticity

AWS provides Auto Scaling and Elastic Load Balancing (ELB) to ensure that the infrastructure

scales dynamically with user demand.

Key components:

• Amazon EC2 Auto Scaling

o Automatically adjusts the number of instances based on traffic and workload.

• Elastic Load Balancing (ELB)

o Distributes incoming application traffic across multiple instances, ensuring

optimal resource utilization and availability.

Managed Kubernetes with Amazon EKS

For container apps, we can utilize Amazon Elastic Kubernetes Service (EKS). EKS simplifies

the deployment and management of Kubernetes clusters by offloading the operational overhead

to AWS, providing a reliable, secure, and scalable platform for managing containers.

Benefits:

• Seamless integration with AWS

• Automatic scaling and self-healing of pods to maintain application reliability.

Storage and Databases

AWS offers wide range of storage and database solutions, ensuring data reliability and security:

• Amazon RDS (Relational Database Service)

o For managing structured data efficiently with automated backups and scaling.

• Amazon S3 (Simple Storage Service)

o To store and serve static assets like images, logs, or backups with high

durability.

Monitoring and Logging

Aws also has some services we can use for monitoring like Amazon CloudWatch. Amazon

CloudWatch offers real-time monitoring of metrics, logs, and alarms to ensure system health.

Security

Even when we use AWS it’s essential to take basic security measures to protect data,

applications, and resources. While AWS provides several built-in security tools, it’s up to us to

configure and use them effectively to safeguard our App. Below are services that AWS offers

and that we can use to enhance the security of our application.

AWS Secrets Manager

AWS Secrets Manager is a fully managed service provided by Amazon Web Services that helps

you securely store, manage, and retrieve sensitive information, such as database credentials,

API keys, and other secrets. This service is particularly useful for managing secrets in cloud-

26

based applications, ensuring that sensitive data is securely handled, stored, and accessed in

compliance with security best practices.

Security Groups

Security Groups are another big thing that we can use within AWS. Security Groups are virtual

firewalls for controlling inbound and outbound traffic to resources like EC2 instances and load

balancers. Each security group can be assigned to instances to define the allowed traffic rules,

ensuring the infrastructure is protected from unauthorized access.

8.5.6 Cloud Diagram

This diagram is a first look at the infrastructure of our application, displaying its main

components and how they interact. It includes a client facing Application Load Balancer (ALB) in

the public subnet, which routes traffic to an EKS control plane for managing containerized

workloads. A NAT Gateway provides secure internet access for resources in the private subnet,

without exposing them directly to the internet.

The private subnet hosts critical components, such as EC2 instances running application pods,

an External Service for internal communication, and a secure RDS database for persistent data

storage. The flow of data ensures scalability, with Kubernetes managing workloads, and

security measures like subnet isolation protecting sensitive resources.

This architecture supports high availability, scalability, and secure communication across

components. Not everything is in this diagram yet. There are other services that we will use but

are not on here. The goal of this diagram is to provide a global view of how the infrastructure is

going to look.

27

8.5.7 cost analysis

Next is a cost analysis of different deployment options for running Kubernetes workloads in our

infrastructure. We compared the expenses associated with Amazon EKS on EC2 instances,

Amazon EKS Serverless (Fargate), and an alternative approach using an Auto Scaling Group

with EC2 instances.

Each option offers distinct trade-offs in terms of cost, performance, and scalability. By

evaluating factors such as resource utilization, pricing models, and workload characteristics, we

aim to determine the most cost-efficient solution for our application while maintaining reliability

and performance.

For this comparison we chose T3.medium instances, so the cost is the same everywhere. This

way we can clearly see the cost difference between services.

Feature EKS with EC2 EKS with Fargate Auto Scaling Group
Compute
Management

EC2 instances
managed in
Kubernetes clusters.

Fully serverless pod
management.

EC2 instances
directly managed in
an ASG.

28

Control Plane Costs

$74/month per
cluster.

$74/month per
cluster.

Does not use one

Compute Costs

Instance costs based
on type (e.g.,
t3.medium
~$30.37/month).

$74.82/month per
pod (2vCPU, 4GB
RAM).

Instance costs based
on type (e.g.,
t3.medium
~$30.37/month).

Load Balancing

Application Load
Balancer
(~$20/month).

Application Load
Balancer
(~$20/month).

Application Load
Balancer
(~$20/month).

S3 storage (~$0.023/GB/month
for storage).

(~$0.023/GB/month
for storage).

 (~$0.023/GB/month
for storage).

Database

RDS (e.g., t3.medium
~$126/month).

RDS (e.g., t3.medium
~$126/month).

RDS (e.g., t3.medium
~$126/month).

Based on the cost analysis, EKS with EC2 instances is the most cost-effective option for our

Kubernetes-based infrastructure compared to EKS Serverless (Fargate) and an Auto Scaling

Group (ASG). While Fargate simplifies management by eliminating the need for instance

provisioning, it comes with higher compute costs and for our use case where cost efficiency is

important, EKS with EC2 is the best option.

Auto scaling groups is an alternative that we could use. But the scaling isn’t as good as the

scaling EKS provides. ASG is also made for simple containerized apps.

8.5.8 Data security

Ensuring the security of data is important, both when it is stored (data at rest) and when it is

transmitted over the network (data in transit). AWS provides several tools and best practices to

ensure that sensitive data remains protected throughout its lifecycle.

We will develop this application with security in mind, this means that throughout the

development, we will look and test for security vulnerabilities.

Data at Rest

Data at rest refers to data stored in databases, file systems, or storage services. To protect this

data, we will use encryption.

Amazon RDS credentials

For relational databases like MySQL, AWS Secrets Manager can be used to securely store and

manage database credentials. Secrets Manager ensures that sensitive credentials, such as

usernames and passwords, are protected by securely storing them in an encrypted vault.

Amazon S3 Encryption

For object storage, S3 provides built-in encryption options. We can enable server-side

encryption using SSE-S3 or SSE-KMS for more granular control over encryption keys. This

protects data such as user-uploaded files or logs.

29

Data in Transit

Data in transit refers to data that is moving between systems or across networks. Encryption is

needed to protect data as it travels over the internet or between components in the cloud.

HTTPS Encryption

All sensitive data transmitted over the web, such as user login information or payment details,

must be encrypted using the HTTPS protocol. This way we ensure that all data sent between

the user’s browser and the app server is encrypted.

9. Timeline for Concept Phase

Phase 1 (Deadline: 2/12/2024)

• View existing data: Analyse the current data sources and structures to understand their

format and usage.

• Investigate OTA updates: Research over-the-air (OTA) update mechanisms to

understand feasibility and compatibility with the system.

• Analyse hosting price & performance: Compare various hosting providers to evaluate

cost, scalability, and performance benchmarks.

• Design server application: Outline the architecture and workflow for the server-side

application, including data handling, user authentication, and API requirements.

• Design UI prototypes: Develop wireframes and mock-ups for the user interface,

focusing on usability and user experience.

• Design data model: Define the structure of the database and how it will interact with the

application, ensuring it supports all necessary operations.

• Determine functional requirements for server application: Finalize the necessary

features and capabilities that the server application must include, such as data storage,

retrieval, and security protocols.

• Submit programming tools and DBMS: Decide on and submit the chosen

programming languages, development tools, and the database management system to

be used.

Phase 2 (Deadline: 16/12/2024)

• Design data visualizations: Develop and test data visualization tools to represent the

data effectively, ensuring they align with user needs.

• Prototype for dashboards for users: Create a functional prototype for user

dashboards that present data in a user-friendly, accessible manner.

• Select Hosting site: Make a final decision on the hosting provider based on the price,

scalability, performance, and security criteria.

• Network & communication choices: Evaluate and decide on network protocols and

communication methods between clients and the server.

30

• Investigate security: Analyse potential security risks and develop strategies for

protecting data, both in transit and at rest.

• Record DevOps configuration: Document the chosen DevOps tools and processes,

including version control, CI/CD pipelines, and automated testing.

• Provision infrastructure: Set up the necessary cloud infrastructure, including virtual

machines, databases, and networking components.

Phase 3 (Deadline: 23/12/2024)

• Prepare presentation concept phase: Develop a concept and materials for presenting

the work done during the concept phase, including visual aids and summaries of key

findings.

• Finish documentation: Complete all necessary project documentation, including user

guides, technical manuals, and the final project report.

10. Risks and measurements

When developing an app, there are always some risks. It is essential to identify them and

consider appropriate measures to address them. By proactively managing these risks, we can

ensure the app is secure, efficient, and user-friendly while maintaining trust and reliability.

Authentication and Authorization Issues:

Risks:

• Unauthorized access to user profiles and data

• Misconfigured permissions allowing users to escalate privileges (e.g., gaining admin

rights)

• Data breaches if authentication mechanisms are poorly secured

Mitigations:

• Implement secure authentication

o Use protocols like OAuth2 or OpenID Connect for authentication.

• Strong password policies

o Require passwords to be at least 12 characters long and include a mix of

character types.

• Rate limiting and account lockout

o Limit failed login attempts to prevent brute force attacks.

• Role-Based Access Control (RBAC)

o Ensure users only have access to features relevant to their role.

Insufficient Protection of Sensitive Data

Risks:

31

• Leakage of sensitive information such as addresses, preferences, or other personal

data.

• Transmission of unencrypted data over the network.

Mitigations:

• Data encryption

o Encrypt sensitive data both at rest (in the database) and in transit (use HTTPS

with TLS).

• Tokenization

o Replace sensitive data with tokens for processing where possible.

• Access control for data

o Ensure that sensitive data can only be accessed by authorized users or services.

Security Vulnerabilities in the Backend API

Risks:

• Injection attacks (e.g., SQL injection) due to improper input validation.

• Exploitation of poorly documented or overly permissive endpoints.

Mitigations:

• Input validation

o Sanitize and validate all inputs against strict criteria. Our frontend tooling

(NEXT.js) will sanitize all input automatically.

• Parameterized queries

o Use prepared statements or ORM tools to prevent injection attacks.

• API security

o Implement rate limiting, strong authentication mechanisms, and endpoint access

restrictions.

• API documentation

o Clearly define and secure each endpoint using tools like Swagger/OpenAPI

Insufficient Transport Layer Security

Risks:

• Data intercepted during transmission over unsecured connections.

• Man-in-the-middle (MITM) attacks.

Mitigations:

• Enforce HTTPS

o Redirect all HTTP traffic to HTTPS and ensure a valid TLS certificate.

• HSTS headers

32

o Implement HTTP Strict Transport Security (HSTS) to prevent protocol

downgrades.

Poor User Input Handling

Risks:

• Cross-Site Scripting (XSS) attacks via poorly sanitized input.

• Broken functionality or system crashes due to unexpected input formats.

Mitigations:

• Content sanitization

o Use libraries or frameworks to sanitize inputs

• Validation

o Validate inputs on both the client side and server side to ensure data integrity.

Insufficient Scalability and Infrastructure Security

Risks:

• Downtime or slow performance due to high traffic or resource constraints.

• Attacks on infrastructure, such as Distributed Denial of Service (DDoS).

Mitigations:

• Infrastructure as Code (IaC)

o Use IaC tools (e.g., Terraform) to ensure consistent and secure deployment.

• Kubernetes for scalability

o Deploy using a Kubernetes cluster for scalability and high availability.

• DDoS mitigation

o Use cloud services with built-in DDoS protection (e.g., AWS Shield or Azure

DDoS Protection)

• Monitoring and logging

o Implement centralized logging and real-time monitoring with tools like

Prometheus and Grafana.

Lack of AI Transparency and Bias

Risks:

• Users might perceive the AI-based carpool predictions as unfair or biased.

• Poor AI model decisions may reduce user trust.

Mitigations:

• Explainability

33

o Provide users with insights into why specific carpool groups and pickup points

were suggested.

• Bias mitigation

o Use diverse datasets to train the AI and continuously evaluate the model for bias.

• User feedback

o Allow users to submit feedback on group and route suggestions, improving the

model over time.

Poor Deployment and Update Practices

Risks:

• Deployment of insecure or outdated code.

• Difficulty scaling or fixing bugs quickly.

Mitigations:

• GitOps

o Automate deployment pipelines with Git-based workflows.

• Automated testing

o Implement unit, integration, and security tests in CI/CD pipelines.

• Regular updates

o Monitor for vulnerabilities and patch dependencies promptly.

Insufficient User Privacy Measures

Risks:

• Users feeling uncomfortable sharing personal data, leading to reduced adoption.

• Legal violations (e.g., GDPR) if data privacy isn’t properly handled.

Mitigations:

• Privacy by design

o Minimize data collection to what is strictly necessary.

• Anonymization

o Store sensitive information in an anonymized or pseudonymized format where

possible.

• User control

o Provide users with options to manage or delete their data.

Lack of Security Awareness Among Users

Risks:

• Use of weak passwords.

Mitigations:

34

• Password policy

o Enforce a strong password policy requiring a minimum length (e.g., 12

characters) and complexity (e.g., including uppercase, lowercase, numbers, and

special characters).

• Multi-factor authentication (MFA)

o Encourage or mandate the use of MFA for better account security.

11. Reporting

During the starting phase of this project, an employee of Axxes visited us to clarify the

assignment and answer questions.

For this project we will report once to the project owner in the form of a presentation. This is

planned on 22/10/2024. On this day we presented our initial idea and preparations to an

employee of Axxes. This gave him a good idea of the application we envisioned and was an

opportunity for us to receive feedback before we create a very detailed project plan.

After this first report we used the feedback from Axxes and our teacher to improve and further

develop this project plan.

On 17/12/2024 we present our final application plan to an employee of Axxes. After this final

report we will move forward with the implementation of the application.

12. Project Team

12.1 Team Members & Roles

- Backend Developer: Jan-Peter Dhallé, Tom Bulen, Oleksii Pidnebesnyi, Mohammed

Hamioui

- UI/UX and Frontend Developer: Tom Bulen, Oleksii Pidnebesnyi, Mohammed Hamioui

- AI/ML Specialist: Oleksii Pidnebesnyi, Maciej Chuchra

- DevOps and QA: Jan-Peter Dhallé, Yorben Wijnants

12.2 Role Descriptions

This subsection defines the key roles and responsibilities for the project team, including the

required skills for each position.

35

12.2.1 Backend Developer

Competences:

- Server-Side Development: Proficient in languages like Node.js, Python, or Java.

- API Development: Skilled in creating RESTful APIs for client-server communication.

- Database Management: Expertise in SQL and NoSQL databases.

- Security Protocols: Knowledge of data security best practices.

Contribution in project:

- The Backend Developer ensures efficient server operations and secure data handling,

enabling scalability and reliability for user authentication, ride requests, and transaction

management.

12.2.2 UI/UX and Frontend Developer

Competences:

- Proficiency in HTML, CSS, Tailwind CSS, shadcn/ui

- Familiarity with React, NextJs

- Understanding of Figma, PS

- Knowledge of UX/UI principles

Contribution in project:

1. Design and implement user interfaces for the applications.

2. Collaborate with backend developers to integrate APIs and other services.

3. Create responsive and accessible designs.

12.2.3 AI/ML Specialist

Competences:

• Proficiency in Python

• Familiarity with PyTorch, Scikit-learn

• Understanding of statistical methods and data analysis

Contribution in project:

1. Design and develop machine learning models and algorithms.

2. Collaborate with other teams to integrate AI capabilities into applications.

3. Validate and test models to ensure accuracy and reliability.

36

12.2.4 DevOps and QA

Competences:

• Proficiency in using Terraform

• Container Orchestration: Expertise in Kubernetes

• Skilled in GitHub Actions

• Knowledge of Prometheus and Grafana

Contribution:

1. Provision and manage infrastructure using Terraform and Kubernetes for scalability.

2. Implement CI/CD pipelines with GitHub Actions for seamless deployments.

3. Set up real-time monitoring with Prometheus and Grafana to track system performance.

13. Conclusion

The carpooling app for Axxes is designed specifically to help employees organize rides for

company events. It reduces the hassle of arranging transportation, making it easier for

employees to connect and attend events.

Before implementation, we dedicated significant effort to selecting the most suitable

frameworks, tools, and methodologies. We defined a clear scope with well-outlined features and

functionalities to implement, assessed potential risks, and devised mitigation strategies to

address them.

With AI, efficient backend systems, and a simple design, the app will promote smoother event

participation and stronger teamwork, aligning with Axxes' values and benefiting both the

company and its employees.

14 Sources

Axxes. Over Axxes. Axxes: https://www.axxes.com/about

Dakowicz, J. (2024, November 14). Pros and Cons of Next JS – 2025 Updated Version.

https://pagepro.co/blog/pros-and-cons-of-nextjs/

 DB-Engines Ranking. https://db-engines.com/en/ranking

DigitalOcean. (2022, March 10). SQLite vs MySQL vs PostgreSQL: A Comparison Of Relational

Database Management Systems.

https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-

comparison-of-relational-database-management-systems

 Set environment variables within your container's environment. dockerdocs:

https://docs.docker.com/compose/how-tos/environment-variables/set-environment-

variables/

37

Documoto. (n.d.). REST API web services: Scalability, flexiblility, and security. Retrieved from

https://www.documoto.com/blog/rest-api-web-services-scalability-flexibility-and-security

DZone. (2019, February 18). Web Development Comparison: Spring Boot vs. Express.js.

https://dzone.com/articles/web-development-comparison-springboot-vs-expressjs

GeeksforGeeks. (2022, October 15). Camparison of FastAPI with Django and Flask.

https://www.geeksforgeeks.org/comparison-of-fastapi-with-django-and-flask/

GeeksforGeeks. (2023, November 15). Best Python libraries for machine learning .

https://www.geeksforgeeks.org/best-python-libraries-for-machine-learning/

 https://www.geeksforgeeks.org/flask-vs-fastapi/

GeeksforGeeks. (2023, September 15). Scikit-Learn vs TensorFlow: Which one should you

choose? https://www.geeksforgeeks.org/scikit-learn-vs-tensorflow-which-one-should-

you-choose/

GeeksForGeeks. https://www.geeksforgeeks.org/django-vs-spring-boot/

 Welcome to GeoPy's documentation! https://geopy.readthedocs.io/en/stable/index.html

Kind. (2021, 8 21). Non-Goals. kind: https://kind.sigs.k8s.io/docs/contributing/1.0-

roadmap/#non-goals

MakeUseOf. (2023, May 10). 7 benefits of using RESTful APIs.

https://www.makeuseof.com/benefits-of-restful-apis/

 MongoDB Cloud Services. MongoDB : https://www.mongodb.com/products/platform/cloud

Numbers, C. (2024, January 9). Camparing Python web frameworks: Django, Flask and

FastAPI. https://www.capitalnumbers.com/blog/django-vs-flask-vs-fastapi/

 Svelte vs. Angular vs. React vs. Vue - Who wins? https://javascript-

conference.com/blog/svelte-vs-angular-vs-react-vs-vue-who-wins/

Superface.ai. (2022, May 10). Geocoding APIs compared: Pricing, free tiers & terms of use.

https://superface.ai/blog/geocoding-apis-comparison-1

Vercel. (2023, November 8). Comparing MySQL, PostgreSQL, and MongoDB .

https://vercel.com/guides/mysql-vs-postgresql-vs-mongodb

	1. Introduction
	2. Background
	2.1 Product owner
	2.2 Current processes

	3. Business case and stakeholders
	3.1 Stakeholders
	3.1.1 Employees of Axxes
	3.1.2 Axxes event management

	3.2 Added value
	3.2.1 Value to employees
	3.2.2 User Experience Improvements
	3.2.3 Stronger Employee Connections

	4. Use Case Diagram
	5. Project Breakdown Structure
	6. ERD
	7. Project Scope
	8. Tech Stack Decisions
	8.1 Backend
	8.1.1 Key Features
	Interaction with the Database:
	Interaction with AI
	API endpoints
	WebSocket Live Chat
	Trigger notifications

	8.1.2 Framework and Tools
	Criteria Summary:

	8.1.3 Conclusion

	8.2 Databases
	8.2.1 Key Features
	Basic Data Storage
	AI Integration
	Query Flexibility
	Low Maintenance
	Backups

	8.2.2 Databases and tools
	Criteria Summary

	8.2.3 Conclusion

	8.3 AI
	8.3.1 Key Features
	User Grouping
	Initial Registration
	Pickup Points
	User Interaction with Pickup Points

	8.3.2 Main Tasks and Tools
	Programming Language
	AI Backend - REST API
	AI Backend Tools
	Geolocation and Route Optimization
	User Grouping and Clustering
	Pickup Points Optimization

	8.3.3 Conclusion

	8.4 Frontend
	8.4.1 Key Features
	8.4.2 Framework and Tools
	Framework Selection Process

	8.4.3 Key Frontend Tools
	Authentication
	Map View
	State Management
	UI Framework
	Icons
	Mock-ups

	8.4.4 Conclusion

	8.5 Infrastructure
	8.5.1 Key Features
	8.5.2 Infrastructure tools
	8.5.3 Conclusion
	8.5.4 Gitlab
	CI/CD
	Branches
	Security

	8.5.5 Cloud environment
	Scalability and Elasticity
	Managed Kubernetes with Amazon EKS
	Storage and Databases
	Monitoring and Logging
	Security

	8.5.6 Cloud Diagram
	8.5.7 cost analysis
	8.5.8 Data security
	Data at Rest
	Data in Transit

	9. Timeline for Concept Phase
	Phase 1 (Deadline: 2/12/2024)
	Phase 2 (Deadline: 16/12/2024)
	Phase 3 (Deadline: 23/12/2024)

	10. Risks and measurements
	11. Reporting
	12. Project Team
	12.1 Team Members & Roles
	12.2 Role Descriptions
	12.2.1 Backend Developer
	Competences:
	Contribution in project:

	12.2.2 UI/UX and Frontend Developer
	Competences:
	Contribution in project:

	12.2.3 AI/ML Specialist
	Competences:
	Contribution in project:

	12.2.4 DevOps and QA
	Competences:
	Contribution:

	13. Conclusion
	14 Sources

